雅可比矩阵及应用
雅可比矩阵 假设某函数 \mathbb{R}^n 需要映射到另一个空间 \mathbb{R}^m 中,雅克比矩阵就是从 \mathbb{R}^n 到 \mathbb{R}^m 的线性映射,其重要意义在于它表现出了多维对多维空间的一个最佳线性估计。因此,雅可比矩阵类似于单变量函数中的导数。事实上,在单变量函数中,导数就是 1\times 1 阶的雅可比矩阵。 注意,以下的推导的矩阵都是行 […]
雅可比矩阵 假设某函数 \mathbb{R}^n 需要映射到另一个空间 \mathbb{R}^m 中,雅克比矩阵就是从 \mathbb{R}^n 到 \mathbb{R}^m 的线性映射,其重要意义在于它表现出了多维对多维空间的一个最佳线性估计。因此,雅可比矩阵类似于单变量函数中的导数。事实上,在单变量函数中,导数就是 1\times 1 阶的雅可比矩阵。 注意,以下的推导的矩阵都是行 […]